
Coherence in the Retail

Space: A Case Study of

Adoption of Coherence at

Macys.com

• BS in Computer

Science University of

Missouri

• Several years in

Government sector

• With Macys for 4

years

• Likes Chinese

noodles

Who Are We?

Macys.com
Opened in 1998

• 250,000 products

available

• 1M page views a

month

Today

• 500,000 products

• 3M page views an

hour

• Highly dynamic

expression of

products

Today:

Multiple Client

Channels

iPhone

Facebook

Amazon

How did we get

here?

Initial Issue - 1:

• JVMs cache by HashMap

• First Hit SLAs require cache

preload

• Upper Limit of 2 concurrent

preloads

• Each Cycle is 30 minutes

• No Incremental data; fresh

data required full recycle

• Can’t scale past 3 load

cycles and meet nightly go

live SLA

Initial Issue - 2:

• Each JVM has to update

its local product

availability

• Process ran on 15s timer

• Caused numerous

contentions on availability

table

Solution:

• Connect all nodes to

grid using mix of near

and local caches

• Forward facing nodes

are non-storage

• Single Data loader on

back

• Single Availability

process using

Command Cache

Implementation:

Side Cache

Implementation:

Traditional OOD

Cat 1

Prod X

UPC A

Prod Y

UPC B

Cat 2

Prod X

UPC A

Implementation:

Traditional OOD
Category Cache
Cat 1

Prod X

UPC A

Prod Y

UPC B

Cat 2

Prod X’

UPC A’

Product Cache
Prod X’’

UPC A’’

Prod Y’

UPC B’

UPC Cache
UPC A’’’

UPC B’’

Implementation:

Modified OOD
Category Cache
Cat 1

Prod X.Id

Prod Y.Id

Cat 2

Prod X’.Id

Product Cache
Prod X

UPC A’.Id

Prod Y

UPC B.Id

UPC Cache
UPC A

UPC B

Object becomes responsible

for resolving Ids

Implementation:

Flyweights

What about the Category

to Family Relationship?

• Family fully contained by

Category

• # of Family objects = # of

Category objects

• Object bloat if unique # of

Family is smaller than

Category

Implementation:

Flyweights
FlyweightManager

• Maintains all

FlyweightManagers by class

• Uses Map to look for a

matching flyweight, if none

then saves as new object

Flyweight

• Overrides equals(Object)

and hashCode() to call

abstract methods

• Method to resolve Flyweight

into managed Flyweight

Implementation:

Flyweights
Implement Family calculate

methods

• Compare uniquely identifying

class members for equals.

Name and Status, not

cached date

• Use same members to build

hashCode

Using Apache’s

HashCodeBuilder build

HashCode from Name

and Status

Implementation:

Flyweights
Writing/Reading Family

• Nothing special, just write

what belongs to Family and

read in the same order

Writing/Reading Category

• Category writes contained

Objects, including Family

• Read all Objects in same

order. Call resolve() on Family

and set to class family

member

Implementation:

Flyweights

Cost: duplication of Family on

storage nodes

Benefit: reduced heap on

front storage nodes.

Implementation:

Spring Enabling
A brief introduction

Spring allows initialization

and wiring of Objects

(beans) by XML

Beans can define lifecycle

methods and Spring will

call them at the

appropriate times.

All beans are contained

by a context. Contexts

may have parent/child

relationships.

Implementation:

Spring Enabling
Starting Coherence

Configure coherence using

System.setProperty()

tangosol.coherence.clusteraddress

CoherenceAttributes.properties

directly injected

CacheCluster Use AppServerInfo to

define cluster address

InlineCacheCluster randomly

generates cluster address/port

DatabaseCacheCluster gets

cluster address/port from DB

Implementation:

Spring Enabling
Initializing Caches

ObjectCachingService iterates over

Cache beans defined within Spring

context calling init().

Cache.init() creates backing cache,

uses <prefix>-beanName as cache

name and passes in listeners, filters,

and indicies.

CoherenceBaseCache calls

CacheFactory.getCache with name

then initalizes its listeners, filters, and

indicies.

Implementation:

Command Cache
Use Case: Product is no

longer available. Change

might trigger a series of

tasks, and prefer to have

work done close to the UPC

data.

Implementation:

Command Cache
• CommandCache uses an outside

Scheduler (Quartz) because

CachingService threads are reentrant

and might cause deadlocks.

• Scheduler is only defined on storage

nodes ensuring separation

• CommandCache locks itself when

processing, blocking other nodes

• Can force processing to nodes that

contain commands, otherwise done by

FIFO.

Implementation:

Command Cache
• Command requires a name. Used by

configure() to find its Processor from

Spring.

• At initiateBatchProcess Filter is used to

select non executed commands

• Commands are grouped by Processor

• Processor executes each command

within its group

Implementation:

Monitoring
RTView for Coherence

• Provides great visibility

into cache activity

• Provides customized

screens functional group

drill downs and heat

maps.

Special issues:

• Data overload due to

large number of caches

• Compatibility with JDK

1.4

Implementation:

Monitoring
RTView for Coherence

• Provides great visibility

into cache activity

• Provides customized

screens functional group

drill downs and heat

maps.

Special issues:

• Data overload due to

large number of caches

• Compatibility with JDK

1.4

Implementation:

Monitoring
RTView for Coherence

• Provides great visibility

into cache activity

• Provides customized

screens functional group

drill downs and heat

maps.

Special issues:

• Data overload due to

large number of caches

• Compatibility with JDK

1.4

Findings:

• Too much cache wrapping makes

Coherence difficult to extend

• Difficult to trace problems down into

coherence layer.

• Provides for centralized runtime

management of the application

29

Personalized links display based

upon Janet’s shopping interests

and behavior/pattern.

Top Finds for You

Recently Viewed

Janet’s personalized content.

Tomorrow:

Personalization

Tomorrow:

Service Delivery

Platform

Oracle Coherence is a key

enabler of the new, agile,

SOA architecture

Services use Near Cache

allows accelerated random

access to the grid

Grid used as the transport

media for event exchange

Special issues:

