

<Insert Picture Here>

Dave Felcey
Coherence Product Manager

Oracle Coherence REST

3

Agenda

• Overview

• Deployment

• RESTful API

• Configuration

• Data Representation

4

Overview
REST

• REST stands for “REpresentational State Transfer”

• The REST architectural style was developed in parallel
with HTTP/1.1, based on the existing design of
HTTP/1.0

• Based on concept of clients and servers

• Requests and responses are built around the transfer of
representations of resources

• While one or more requests are outstanding, the client
is considered to be in transition – between states

• Scales very well, loosely couples components and
interfaces can be general purpose

5

Overview
Coherence REST

• Provides easy access to Coherence caches and cache
entries over HTTP protocol

• Similar to Coherence*Extend, providing data access
from outside Coherence cluster

• No specific serialization required - like POF

• Using HTTP data can be marshaled in multiple
representation formats, such as JSON and XML

• Allows access to Coherence from languages like Ruby
and Python

• Has a dependency on Oracle and third-party libraries:
JAXB, JAX-RS (Jersey), Grizzly and Jackson (Apache)

6

Deployment
Coherence REST

• Coherence RESTful Web Services can be deployed
either using embedded HTTP server or using any of
standard Servlet containers

• When embedded HTTP server is used communication
via proxy server
– http-acceptor element (inside proxy-scheme) configured
– http-acceptor specifies connection details etc.

• When external Servlet container is used its like
deploying any other web application
– Package web.xml descriptor, dependency jars and mandatory

REST configuration into single WAR file (in WEB-INF, WEB-
INF\lib and WEB-INF\classes folders respectively).
Specify Jersey application as Servlet

7

RESTful API
Coherence REST

• Single object operations - GET/PUT/DELETE /
{cache-name}/{key}
– Returns/creates/deletes a single object from the cache based

on a key.
– For GET supports partial results (see section on partial object

operations details below), for PUT returns 201 (Created) if the
object was created, 200 (OK) if it was updated.

– For GET/DELETE returns 404 (Not Found) if the object with the
specified key does not exist and for PUT returns 409 (Conflict)
and current object as an entity if optimistic concurrency check
fails (see Concurrency Control section below for details).

8

RESTful API (continued)
Coherence REST

• Multi-object operations allow users to retrieve, update
or delete multiple objects in a single network request,
which can significantly reduce the “chattiness” and
improve network performance - GET/DELETE /
{cacheName}/({key1, key2, …})
– Returns/deletes a set of objects from the cache based on the

specified keys. The ordering of returned objects is undefined.
– Supports partial results (see section on partial object operations

below for details).
– Always returns 200 (OK), even if there are no objects found or

in the result set. For GET an empty result set would be returned
if none found. Missing return objects are silently omitted

– PUT has been implemented intentionally. It would require URL/
body ordering and could easily produce tainted data

9

RESTful API (continued)
Coherence REST

• Partial Object Properties can also be retrieved and
returned as a matrix. In the URL GET
/people/123;p=id,name,address:(country)
the id, name and country field of the Person object with
the key 123 has been requested. The Person object is
shown below:

public class Address {
 public String street;
 public String city;
 public String country;
}

public class Person {
 public Long id;
 public String name;
 public Address address;
}

10

RESTful API (continued)
Coherence REST

• Queries can be performed by passing Coherence QL
expression as a query parameter q, results can be
sorted using asort matrix parameter, or limited by
specifying start and count matrix parameters - GET /
{cacheName};sort={sortOrder};start={start};count={coun
t}?q={query}
– Query must be a URL-encoded Coherence QL expression
– Sort order is a comma-separated list of properties to sort on,

each can have optional :asc (default) or :desc qualifier, e.g.
sort=name,age:desc

– Start and count are optional integer arguments

11

RESTful API (continued)
Coherence REST

• Aggregations can be performed on data in a cache
using both built-in and custom aggregators
– GET /{cacheName}/{aggregator(args, …)} aggregates

all entries in the cache.
– GET /{cacheName}/{aggregator(args, …)}?
q={query} aggregates query results.

– GET /{cacheName}/({key1, key2, …})/
{aggregator(args, …)} aggregates specified entries.

– Returns 200 (OK) with aggregation result as entity if
aggregation is performed successfully

– Returns 400/500 if aggregation fails
– Where URL doesn’t contain any parameters or constructor

accepting single ValueExtractor then default constructor
used, e.g. GET /people/count())

12

RESTful API (continued)
Coherence REST

• Processing can be invoked against built-in and custom
entry processors, on one or more objects in the cache.
– POST /{cacheName}/{processor(args, …)} processes

all entries in the cache.
– POST /{cacheName}/{ processor (args, …)}?
q={query} processes query results.

– POST /{cacheName}/({key1, key2, …})/{ processor
(args, …)} processes specified entries.

– Returns 200 (OK) with processing result as entity if processing
is performed successfully. Returns 400/500 if processing fails

– Coherence REST doesn’t assume anything about processor
creation. For each entry processor implementation there needs
to be ProcessorFactory implementation that that takes string
inputs from URL call to instantiate processor instance

13

RESTful API (continued)
Coherence REST

– Coherence REST provides two such factories for
NumberIncrementor and NumberMultiplier

– For example to increment each person’s age for increment
value 5, one could: GET /people/increment(age, 5)

14

RESTful API (continued)
Coherence REST

• Concurrency Control is implemented in Coherence
REST using optimistic concurrency only, as it maps
cleanly to the HTTP protocol.
– Cached objects must implement the
com.tangosol.util.Versionable interface to use
concurrency controls - Comparable
getVersionIndicator() and void incrementVersion()

– A version property is returned as an etag header when object is
requested

– When the user submits a PUT request to update the object, the
etag header is sent as well

– This is used to determine if the object within the cluster has been
changed in the meantime.

– If change detected then update performed and 409 (Conflict)
status with the existing entity - so the can reapply and retry

15

Configuration
Coherence REST

• REST Configuration is made out of few segments:
Resource, Aggregator and Processor configurations
– Resource configuration is the only mandatory segment of

Coherence REST configuration, e.g.
<resource>
<cache-name>test-cache</cache-name>

<key-class>java.lang.Integer</key-class>

<value-class>com.foo.Person</value-class>

</resource>
– Aggregator configuration is where custom aggregator factories

and names are specified
– Processor configuration is where custom entry procesor

factories and names are specified

16

Data Representation
Coherence REST

• Input and output Data in Coherence REST can be
either in an XML or JSON format
– XML. In order to use XML representation, objects stored in the

cache will have to have the appropriate JAXB bindings defined.
These are created using the xjc tool.

– JSON. In order to use JSON representation, objects stored in
the cache will either have to have appropriate Jackson bindings
defined or JAXB bindings defined. Using Jackson annotations
gives user more power on controlling the output JSON format,
but in case when both XML and JSON formats are needed,
JAXB annotations can be enough for both formats.

