/‘,’
= Java

ORACLE

Java & Coherence
Simon Cook - Sales Consultant, FMW for Financial Services

with help from
Adrian Nakon - CMC Markets & Andrew Wilson - RBS

ORACLE’

2

Presentation Agenda

Java Garbage Collectors

Questions and Answers

Coherence Special Interest Group Meeti

ing 15t March

An Overview of the Java Memory Management

Tuning Garbage Collection for Coherence
The Next Generation Garbage Collector

2012

. Tuning the Underlying Platform is Important

Efficiency is the key

« Coherence is extremely fast — even with restricted resources

 Operational efficiency has many advantages
— Better run-time performance
— Fewer resources to manage
— Fewer Oracle Coherence licenses to buy

- Remember to take a holistic when tuning
— The hardware and the operating system
— The Java Virtual Machine
— Coherence configuration
— Application code

— Database tuning and optimisation

3 Coherence Special Interest Group Meeting 15t March 2012

Tuning the Java Virtual Machine

Lots and lots and lots of options

Current generation JVMs have many tuning options
— Some will give small efficiencies
— Some will give massive efficiencies

Tuning your GC to minimise pause time will be key
— Reduce the number of Full GCs
— Reduce the latency overhead of GCs

Long GCs are disastrous for a distributed caches such as Coherence

Understand your latency requirements and work towards them

You will have to make compromises in some way

ORACLE’

4 Coherence Special Interest Group Meeting 15t March 2012

ORACLE’

5

Generational Garbage Collection
Employed by all HotSpot GC algorithms

The majority of JVMs use generational collectors

The heap is split into “generations”
— Young, newly created objects
— 0Old, longer lived objects

Weak generational hypothesis
— Proved by observation and it's extremely accurate for Java Applications

Most objects are very short lived
— 80-98% of all newly allocated objects die within a few million instructions

— 80-98% of all newly allocated objects die before another megabyte has
been allocated

Coherence Special Interest Group Meeting 15t March 2012

Some Quick Words on Garbage Collectors
Dealing with the rubbish

There are two classes of GC algorithms in Java
— The Throughput Collectors
— The Low Pause (latency) Collectors

Throughput collectors are the default
— They reorganise the old heap during a collection
— They are not suitable for Coherence

CMS is a low pause collector
— Aims to keep application pauses to a minimum
— Is a suitable collector for Coherence

G1 is still in development — do not use for Coherence today *

6 Coherence Special Interest Group Meeting 15t March 2012

The Java Heap Layout

For all collector algorithms

Promoted after YGC Promoted after n swaps

N N N\

**

Objects are created here Swapped n times Old objects live and die here Classes etc. go here

* Young Space is composed of Eden and the two Survivor Spaces.
** Perm Space is going away!
ORACLE

7 Coherence Special Interest Group Meeting 15t March 2012

Compacted Old Space

Throughput Collectors — Serial and Parallel (and G1)

After FGC Occupied Space Free Space

Before FGC Occupied Space

|

ORACLE’

8 Coherence Special Interest Group Meeting 15t March 2012

Object Allocation Pointer

. Fragmented Old Space

CMS Collector

Occupancy Threshold

Before FGC Occupied Space Free Space

(A

ORACLE’

9 Coherence Special Interest Group Meeting 15t March 2012

Free List

“You may think it's impossible to run large heaps with
CMS on restricted hardware. This is simply not true, it's

very possible!”

Adrian Nakon
Coherence Architect, CMC Markets

ChiC

cmc markets

ORACLE’

Coherence Special Interest Group Meeting 15t March 2012

. A List of Stop the World Pauses

Know your enemy

Young space collections

Full GCs — All collectors

System GCs — Called via JMX or the application
CMS Initial Mark Phase

CMS Remark Phase

CMS Concurrent Mode Failure

2 o

ORACLE"
1 1 Cohere i ing 1st

Tuning the CMS Collector

The collector of choice for Coherence

CMS will enable large heaps, even on restricted hardware

CMS is not like the other collectors
— Concurrent collections with multiple, small STW pauses

Running with defaults can be fine for small heaps
For larger heaps you need to consider tuning CMS for best results
Should you use NIO or 64 bit JVMs?

— CMS can perform very well will large heaps when correctly tuned
— NIO has limitations and garbage collection a manual task

ORACLE’

1 2 Coherence Special Interest Group Meeting 15t March 2012

Tuning the CMS Collector

Good performance will take some thought

A different collector is used for the Young Space
— The ParNew Collector

The aim is to minimise the STW pauses
— The Young Space Collections

— The Initial Mark

— The Remark

CMS is concurrent and will therefore require CPU
— It will compete with your application during collections

It fragments the OIld Space

— Object allocations are more complicated

ORACLE’

1 3 Coherence Special Interest Group Meeting 15t March 2012

. Tuning the CMS Collector

The Weak Generational Hypothesis

* It is important to give objects the opportunity to die young

* Young Collections are fast and efficient
— Only live objects are copied
— Most objects will be dead (transient) so it is fast
— Space is cleared quickly with minimal application pauses

« Sizing the Young ratio is key
— Size the survivor spaces appropriately
— Configure the Tenuring Threshold appropriately
— Think about your cache expiry settings if appropriate (remember backups!)

ORACLE’

1 4 Coherence Special Interest Group Meeting 15t March 2012

Tuning the CMS Collector

Minimise the marking phases pause times

« Minimise your pause times
— The Initial Mark Phase
— The Remark Phase

CMS has to scan Young Space to look for relationships

If Young Space is not empty this will take time

You can instruct CMS to wait for a Young GC before starting

An empty Young Space will dramatically reduce marking times

ORACLE’

1 5 Coherence Special Interest Group Meeting 15t March 2012

Tuning the CMS Collector

Worst case scenario

« Concurrent Mode Failure
— All bets are off
— No new objects can be allocated into the Old Space
— The heap will be compacted to recover fragmented space
— This may take some time, grab a coffee

« Sizing your heap correctly is key to avoiding this
— Undersized heaps will make CMS work overtime

 Allowing objects to die in the young space will help avoid this
— Remember The Weak Generational Hypothesis
— Most objects die young and can be collected easily

ORACLE’

1 6 Coherence Special Interest Group Meeting 15t March 2012

Recommended Settings

There may be some more, HotSpot has many

Limited CPU resource results in ...

— Fewer JVM'’s per server (less possible context switching)

— Strive to keep as much garbage out of tenured space as possible

— Maximum size of Young Space is limited by Young Gen collection time.

Low latency requirements

— Ensure Young gens and CMS operations (mark / remark phases) are tightly
integrated.

Large data heaps required

— Use 64 bit JVM

Every Application is different, do not just rely on the default JVM

settings

1 7 Coherence Special Interest Group Meeting 15t March 2012

Recommended Base Settings
Generic JVM settings

* —verbose:gc

* —XX:4+UseConcMarkSweepGC

* —XX:+UseParNewGC

* —XX:+HeapDumpOnOutOfMemoryError

* —XX:HeapDumpPath=coherence/logs/<filename>
* —XX:+UseNUMA

ORACLE’

1 8 Coherence Special Interest Group Meeting 15t March 2012

ORACLE’

19

Recommended Logging Settings

Logging related JVM settings

-XX:+PrintGCDetails
—XX:+PrintGCTimeStamps
—-XX:+PrintGCDateStamps
-XX:+PrintTenuringDistribution

-Xloggc:/opt/oracle/admin/coherence/logs/<filename>

Coherence Special Interest Group Meeting 15t March 2012

. Recommended CMS Settings

CMS tuning JVM Settings

-XX:MaxTenuringThreshold=15

* —XX:CMSWaitDuration=300000

* —XX:+CMSScavengeBeforeRemark

* —XX:CMSInitiatingOccupancyFraction=65
* —XX:+UseCMSInitiatingOccupancyOnly

e —XX:SurvivorRatio=4

—Xms<x>m —-Xmx<x>m -—-Xmn<y>m

ORACLE’

20 Coherence Special Interest Group Meeting 15t March 2012

. Sizing your heap

The Goldilocks Heap

* You're looking for The Goldilocks Heap
— Not too small
— Not too big
— Just right

* Profile your applications and it's object allocation and de-allocation
— Coherence — Caches, expiry, processing, proxies, monitoring, etc.

* You have control over
— Initial and maximum overall heap size
— Perm space size
— Young space/old space ratio

— Survivor spaces/young space ratio

21 Coherence Special Interest Group Meeting 15t March 2012

“If your heap is 80% full after a full GC then your
application performance will drop off a cliff.”

Andrew Wilson
Coherence Architect, RBS

%< RBS

The Royal Bank of Scotland Group

ORACLE’

Coherence Special Interest Group Meeting 15t March 2012

. Sizing Your Heap

Memory usage and throughput

700

60.0

50.0 k‘\‘v\
a:‘g':;::;:fd S —o— Number of aggregated objects
”:':'::t:‘" 300 —s— QutOfMemory

200

10.0 \N’

00 T T T T T T T T T 4

0 10 20 30 40 50 60 70 80 90 100
Percentage of Old generation Used

ORACLE’

23 Coherence Special Interest Group Meeting 15t March 2012

. Sizing the Young Space

If possible, allow objects to die young

 Remember the Weak Generational Hypothesis
— The vast majority of objects die very young

* Young collections are cheaper than old

* You need to meet the following criteria
— Make the young space large enough so objects die young
— Do not make the young space too large — long GCs

* It's a balancing act
— You need to understand your application’s memory profile

ORACLE’

24 Coherence Special Interest Group Meeting 15t March 2012

About Survivor Spaces

Wait for short-lived objects to die

 Survivor spaces give objects more opportunity to die
You have full control over this

You can set the Survivor Space Ratio

— —XX:SurvivorRatio=<n>

You can set the Maximum Tenuring Threshold (number of swaps)
— —XX:MaxTenuringThreshold=15

If you get this right

— Your young GCs will remain efficient

— More objects will die in young

ORACLE’

25 Coherence Special Interest Group Meeting 15t March 2012

. Tenuring Distributions

The flow of objects through the survivor spaces

[GC 526703.667: [ParNew
Desired survivor size 53673984 bytes, new threshold 8 (max 8)
- age 1: 19709184 bytes, 19709184 total

- age 2 382384 bytes, 20091568 total
- age 3: 435072 bytes, 20526640 total
- age 4. 486544 bytes, 21013184 total
- age 5: 725872 bytes, 21739056 total
- age 6: 541144 bytes, 22280200 total
- age 7 741464 bytes, 23021664 total

- age 8: 523912 bytes, 23545576 total
: 852844K->26740K(943744K), 0.1001560 secs] 2780990K->1959523K (8283776K),
0.1003690 secs] [Times: user=0.26 sys=0.00, real=0.10 secs]

ORACLE’

26 Coherence Special Interest Group Meeting 15t March 2012

. Tools

There are many tools, some free, some not.

OS Level Tools Java Tools

* sar - ksar - -verbose:gc

* vmstat . gcstat

* iostat « jvisualvm

* Free « jconsole

* nmon

Log management tools Payware Tools

* Vi, more, less, grep » Oracle Enterprise Manager
« GCViewer * Wily Introscope (CA)
* Splunk * |ITRS Geneos

« Logscape « SL RTView

* LogMX « Evident Clearstone

ORACLE’

27 Coherence Special Interest Group Meeting 15t March 2012

Further Reading

Lots of good material out there

“A Generational Mostly-concurrent Garbage Collector” by Tony Printezis
and David Detlefs — The guys who wrote CMS!

http://labs.oracle.com/techrep/2000/abstract-88.html

ORACLE’

28 Coherence Special Interest Group Meeting 15t March 2012

. The Garbage First (G1) Collector

The next generation HotSpot Collector

« CMS Replacement (early access JRE 6 u14 onwards™)
« Server “Style” Garbage Collector

 Parallel

* Mostly Concurrent

« Generational

« Good Throughput

« Compacting

* Improved ease-of-use

* Predictable (though not hard real-time)

ORACLE
29 Coherence Special Interest Group Meeting 15t March 2012

. Colour Key for Heap Spaces

Non-Allocated Space

Young Generation
I Old Generation
I Recently Copied in Young Generation
B Recently Copied in Old Generation

ORACLE’

30

. Young GCs in CMS

* Young generation, split into
* Eden
* Survivor spaces

 Old generation
* In-place de-allocation
« Managed by free lists
» Heap fragmentation

= -_l

ORACLE’

31 Coherence Special Interest Group Meeting 15t March 2012

. Young GCs in CMS

« End of young generation GC

ORACLE’

32 Coherence Special Interest Group Meeting 15t March 2012

. Young GCs in G1

* Heap split into regions
* Currently 1MB regions

* Young generation
« Aset of regions

* Old generation
» Aset of regions

ORACLE’

33 Coherence Special Interest Group Meeting 15t March 2012

. Young GCs in G1

* During a young generation GC

« Survivors from the young regions are
evacuated to:

» Survivor regions
« Old regions

ORACLE’

34 Coherence Special Interest Group Meeting 15t March 2012

Young GCs in G1

« End of young generation GC

ORACLE
35 Coherence Special Interest Group Meeting 15t March 2012

. Summary: Young GCs in G1

 Single physical heap, split into regions

« Set of contiguous regions allocated for large (“humongous”) objects
* No physically separate young generation

« A set of (non-contiguous) regions

* Very easy to resize
* Young GCs

* Done with “evacuation pauses”

« Stop-the-world

- Parallel

« Evacuate surviving objects from one set of regions to another

ORACLE’

36 Coherence Special Interest Group Meeting 15t March 2012

. Old GCs in CMS (Sweeping After Marking)

« Concurrent marking phase
« Two stop-the-world pauses
* |nitial mark
 Remark
« Marks reachable (live) objects

« Unmarked objects are deduced to
be unreachable (dead)

ORACLE’

37 Coherence Special Interest Group Meeting 15t March 2012

. Old GCs in CMS (Sweeping After Marking)

_ I * End of concurrent sweeping phase

 All unmarked objects are de-

::'L :. : q. allocated
)

ORACLE’

38

. Old GCs in G1 (After Marking)

« Concurrent marking phase -
* One stop-the-world pause
 Remark

* (Initial mark piggybacked on an
evacuation pause)
» Calculates liveness information -
per region
« Empty regions can be reclaimed -

immediately

ORACLE’

39 Coherence Special Interest Group Meeting 15t March 2012

. Old GCs in G1 (After Marking)

* End of remark phase -

ORACLE
40 Coherence Special Interest Group Meeting 15t March 2012

. Old GCs in G1 (After Marking)

* Reclaiming old regions - -
» Pick regions with low live ratio
« Collect

* Only a few old regions collected
per such GC

ORACLE
41 Coherence Special Interest Group Meeting 15t March 2012

Old GCs in G1 (After Marking)

* We might leave some garbage
objects in the heap
* In regions with very high live ratio
* We might collect them later

ORACLE’

42 Coherence Special Interest Group Meeting 15t March 2012

. CMS vs. G1 Comparison

43

In Summary

Don’t just accept the defaults, every application differs

« Strive to keep garbage out of Tenured/OIld Space

Size young accordingly
— Too big and your pauses will be too long
— Too small and too much garbage will be tenured

Think about your Survivor Spaces
— Allow objects to die young
— Look at the object distributions

Synchronise young and old collections with CMS

Overall Heap size is important
— Don’t give the GCs too much work to do

ORACLE’

Coherence Special Interest Group Meeting 15t March 2012

ORACLE’

Coherence Special Interest Group Meeting 15t March 2012

Hardware and Software

Engineered to Work Together

ORACLE
46 Coherence Special Interest Group Meeting 15t March 2012

ORACLE

