
Database backed Coherence cache
Tips, Tricks and Patterns

Alexey Ragozin
alexey.ragozin@gmail.com

May 2012

mailto:alexey.ragozin@gmail.com

Power of read-write-backing-map

• Fetching data as needed
• Separation of concerns
• Gracefully handling concurrency
• Write-behind – removing DB from critical path
• Database operation bundling

… and challenges

� DB operations are order of magnitude slower
• Less deterministic response time
• Coherence thread pools issues

� How verify persistence with write behind?
� Data are written in DB in random order
� read-write-backing-map and expiry

TIPS

BinaryEntryStore, did you know?

BinaryEntryStore – an alternative to
CacheLoader / CacheStore interface.
Works with BinaryEntry instead of objects.

� You can access binary key and value
• Skip deserialization, if binary is enough

� You can access previous version of value
• Distinguish inserts vs. updates
• Find which fields were cached

� You cannot set entry TTL in cache loader /

When storeAll(…) is called?

� cache.getAll(…)
• loadAll(…) will be called with partition granularity

(since Coherence 3.7)

� cache.putAll(…)
• write-behind scheme will use storeAll(…)
• write-through scheme will use store(…)

(this could be really slow)

When storeAll(…) is called?

� cache.invokeAll(…)/aggregate(…)
• calling get() on entry will invoke load(…)

(if entry is not cached yet)

• calling set() on entry will invoke put(…)
(in case of write-through)

• you can check entry.isPresent() to avoid needless
read-through

• Coherence will never use bulk cache store
operations for aggregators and entry processors

Warming up aggregator

public static void preloadValuesViaReadThrough(Set<BinaryEntry> entries) {
 CacheMap backingMap = null;
 Set<Object> keys = new HashSet<Object>();
 for (BinaryEntry entry : entries) {
 if (backingMap == null) {
 backingMap = (CacheMap) entry.getBackingMapContext().getBackingMap();
 }
 if (!entry.isPresent()) {
 keys.add(entry.getBinaryKey());
 }
 }
 backingMap.getAll(keys);
}

Code above will force all entries for working set to be
preloaded using bulk loadAll(…).
Call it before processing entries.

Why load(…) is called on write?

Case:
• Entry processor is called on set of entries which is

not in cache and assigns values to them
Question:
• Why read-through is triggered?
Answer:
• BinaryEntry.setValue(Object) returns old value
• Use BinaryEntry.setValue(Object, boolean)

Bulk put with write through

You can use same trick for updates.
1. Pack your values in entry processor.
2. In entry processor obtain backing map reference.
3. Call putAll(…) on backing map.
Be careful !!!
• You should only put key for partition entry processor

was called for.
• Backing map accepts serialized objects.

Using operation bundling

Worker
thread1

Worker
thread2

Req 1

Req 2

Worker
thread3

storeAll()

RWBM Cache
Store

W
ai

tin
g

Req 3

Worker thread 3

Req 1
Req 2
Req 3

Worker
thread1

Worker
thread2

Worker
thread3 RWBM Cache

Store

Using operation bundling

storeAll(…) with N keys could be called if
� You have at least N concurrent operations
� You have at least N threads in worker pool

<cachestore-scheme>
<operation-bundling>

<bundle-confing>
<operation-name>store</operation-name>
<delay-millis>5</delay-millis>
<thread-threshold>4</thread-threshold>

</bundle-config>
</operation-bundling>

</cachestore-scheme>

Checking STORE decoration

� Configure cache as “write-behind”
� Put data
� Wait until, STORE decoration become TRUE

(actually it will switch from FALSE to null)

public class StoreFlagExtractor extends AbstractExtractor implements PortableObject {
 // ...
 private Object extractInternal(Binary binValue, BinaryEntry entry) {
 if (ExternalizableHelper.isDecorated(binValue)) {
 Binary store = ExternalizableHelper.getDecoration(binValue, ExternalizableHelper.DECO_STORE);
 if (store != null) {
 Object st = ExternalizableHelper.fromBinary(store, entry.getSerializer());
 return st;
 }
 }
 return Boolean.TRUE;
 }
}

BEHIND SCENES

How it works?

Distributed cache service

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

How it works?

Distributed cache service

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distribution and backup of data

Storing cache data, expiry

Interacting with
persistent storage

Caching cache loader misses

Coordination

How it works?

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

get(key)

Distributed cache service

#1

Cache service
is receiving
get(…)
request.

How it works?

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

get(key)

Distributed cache service

get(key)

#2

Cache service
is invoking
get(…) on
backing map.
Partition
transaction is
open.

How it works?

#3

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

get(key)

get(key)Backing map
checks internal
map and miss
cache if present.
Key is not found.

How it works?

#4

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

load(key)

Distributed cache service

get(key)

get(key)Backing map is
invoking
load(…) on
cache loader.

How it works?

#5

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

query external data source

get(key)

get(key)

load(key)

Cache loader
is retrieving
value for
external
source

How it works?

#6

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

get(key)

get(key)

load(key)

query external data source

Value is loaded

How it works?

#7

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

get(key)

get(key)

load(key)

query external data source

Backing map is
updating
internal map

How it works?

#8

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

map event

Distributed cache service

get(key)

get(key)

load(key)

query external data source

Internal map is
observable and
cache service is
receiving event
about new entry in
internal map.

How it works?

#9

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

map event

Distributed cache service

get(key)

get(key)

load(key)

query external data source

Call to backing
map returns.
Cache service
is ready to
commit
partition
transaction.

How it works?

#10

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

update backup
Distributed cache service

get(key)

get(key)

load(key)

map event

query external data source

Partition
transaction is
being
committed.
New value is
being sent to
backup node.

How it works?

#11

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

get(key)

get(key)

load(key)

map event

update backup

query external data source

Response for
get(…)
request is sent
back as backup
has confirmed
update.

How it works?

#1

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

Cache service
is receiving
put(…)
requiest.

How it works?

#2

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

Cache service
is invoking
put(…) on
backing map.
Partition
transaction is
open.

How it works?

#3

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

Value is
immediately
stored in
internal map
and put to
write-behind
queue.

How it works?

#4

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

map event
DECO_STORE=false

Cache service is
receiving event, but
backing map is
decorating value with
DECO_STORE=false
flag to mark that value
is yet-to-stored.

How it works?

#5

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

map event
DECO_STORE=false

Call to backing
map return.

How it works?

#6

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service
update backup

map event
DECO_STORE=false

Partition transaction
is being committed.
Backup will receive
value decorated with
DECO_STORE=false.

How it works?

#7

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

map event
DECO_STORE=false

update backup

Cache service is
sending response
back as soon as
backup is
confirmed.

How it works?

#8

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

Eventually, cache
store is called to
persist value.
It is done on
separate thread.

How it works?

#9

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

store to external storage

Value is stored
in external
storage by
cache store.

How it works?

#10

store to external storage

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

map event
DECO_STORE=null

Once call to cache
store has returned
successfully. Backing
map is removing
DECO_STORE
decoration from value
is internal map.
Cache service is
receiving map event

How it works?

#11

store to external storage

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service
update backup

map event
DECO_STORE=null

Map event was
received by cache
service outside of
service thread. It will
be put to OOB queue
and eventually
processed.
Update to backup will
be sent once event is
processed.

THREADING

Requests and jobs

putAll(…)

Client side:
One method call

Requests and jobs

putAll(…)

PutRequest

PutRequest

PutRequest

Network:
One request for
each member

Requests and jobs

putAll(…)

PutRequest

PutRequest

PutRequest

Job

Job

Job

Storage node:
One job per partition

Requests and jobs

Problem
� Single API call may produce hundreds of jobs

for worker threads in cluster (limited by
partition count).

� Write-through and read-through jobs could be
time consuming.

� While all threads are busy by time consuming
jobs, cache is unresponsive.

Requests and jobs

Workarounds
� Huge thread pools
� Request throttling
� By member (one network request at time)
� By partitions (one job at time)

� Priorities
� Applicable only to EP and aggregators

“UNBREAKABLE CACHE” PATTERN

“Canary” keys

� Canary keys – special keys (one per partitions)
ignored by all cache operations.

� Canary key is inserted once “recovery”
procedure have verified that partition data is
complete.

� If partition is not yet loaded or lost due to
disaster, canary key will be missing.

Recovery procedure

� Store object hash code in database
� Using hash you can query database for all keys

belonging to partition
� Knowing all keys, can use read-through to pull

data to a cache

� Cache is writable during recovery!
� Coherence internal concurrency control will

ensure consistency

“Unbreakable cache”

read/write-trough + canary keys + recovery
� Key based operations rely on read-through
� Filter based operations are checking “canary”

keys (and activate recovery is needed)
� Preloading = recovery
� Cache is writable at all times

Checking “canary” keys

� Option 1
9 check “canary” keys
9 perform query

� Option 2
9 perform query
9 check “canary” keys

Checking “canary” keys

� Option 1
9 check “canary” keys
9 perform query

� Option 2
9 perform query
9 check “canary” keys

� Right way
9 check “canaries” inside of query!

“Unbreakable cache”

Motivation
� Incomplete data set would invalidate hundred of hours of

number crunching
� 100% complete data or exception
� Persistent DB is requirement anyway

Summary
� Transparent recovery (+ preloading for free)
� Always writable (i.e. feeds are not waiting for recovery)
� Graceful degradation of service in case of “disastrous

conditions”

Thank you

Alexey Ragozin
alexey.ragozin@gmail.com

http://blog.ragozin.info
- my articles
http://code.google.com/p/gridkit
- my open source code

http://blog.ragozin.info/
http://blog.ragozin.info/
http://code.google.com/p/gridkit

