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Power of read-write-backing-map 

• Fetching data as needed 
• Separation of concerns 
• Gracefully handling concurrency 
• Write-behind – removing DB from critical path 
• Database operation bundling 



… and challenges 

� DB operations are order of magnitude slower 
• Less deterministic response time 
• Coherence thread pools issues 

� How verify persistence with write behind? 
� Data are written in DB in random order 
� read-write-backing-map and expiry 



TIPS 



BinaryEntryStore, did you know? 

BinaryEntryStore – an alternative to 
CacheLoader / CacheStore interface. 
Works with BinaryEntry instead of objects. 
 

� You can access binary key and value 
• Skip deserialization, if binary is enough 

� You can access previous version of value 
• Distinguish inserts vs. updates 
• Find which fields were cached 

� You cannot set entry TTL in cache loader / 



When storeAll(…) is called? 

� cache.getAll(…) 
• loadAll(…) will be called with partition granularity 

(since Coherence 3.7) 

� cache.putAll(…) 
• write-behind scheme will use storeAll(…) 
• write-through scheme will use store(…) 

(this could be really slow) 

 
 



When storeAll(…) is called? 

� cache.invokeAll(…)/aggregate(…) 
• calling get() on entry will invoke load(…) 

(if entry is not cached yet) 

• calling set() on entry will invoke put(…) 
(in case of write-through) 

• you can check entry.isPresent() to avoid needless 
read-through 

• Coherence will never use bulk cache store 
operations for aggregators and entry processors 
 



Warming up aggregator 

public static void preloadValuesViaReadThrough(Set<BinaryEntry> entries) {
 CacheMap backingMap = null;
 Set<Object> keys = new HashSet<Object>();
 for (BinaryEntry entry : entries) {
  if (backingMap == null) {
   backingMap = (CacheMap) entry.getBackingMapContext().getBackingMap();
  }
  if (!entry.isPresent()) {
   keys.add(entry.getBinaryKey());
  }
 }
 backingMap.getAll(keys);
}

Code above will force all entries for working set to be 
preloaded using bulk loadAll(…). 
Call it before processing entries. 

 



Why load(…) is called on write? 

Case: 
• Entry processor is called on set of entries which is 

not in cache and assigns values to them 
Question: 
• Why read-through is triggered? 
Answer: 
•  BinaryEntry.setValue(Object) returns old value 
• Use BinaryEntry.setValue(Object, boolean) 

 



Bulk put with write through 

You can use same trick for updates. 
1. Pack your values in entry processor. 
2. In entry processor obtain backing map reference. 
3. Call putAll(…) on backing map. 
Be careful !!! 
• You should only put key for partition entry processor 

was called for. 
• Backing map accepts serialized objects. 
 



Using operation bundling 
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Using operation bundling 

storeAll(…) with N keys could be called if 
� You have at least N concurrent operations 
� You have at least N threads in worker pool 

<cachestore-scheme>
<operation-bundling>

<bundle-confing>
<operation-name>store</operation-name>
<delay-millis>5</delay-millis>
<thread-threshold>4</thread-threshold>

</bundle-config>
</operation-bundling>

</cachestore-scheme>



Checking STORE decoration 

� Configure cache as “write-behind” 
� Put data 
� Wait until, STORE decoration become TRUE 

(actually it will switch from FALSE to null) 

public class StoreFlagExtractor extends AbstractExtractor implements PortableObject {   
    // ...
    private Object extractInternal(Binary binValue, BinaryEntry entry) {
        if (ExternalizableHelper.isDecorated(binValue)) {
            Binary store = ExternalizableHelper.getDecoration(binValue, ExternalizableHelper.DECO_STORE);
            if (store != null) {
                Object st = ExternalizableHelper.fromBinary(store, entry.getSerializer());
                return st;
            }
        }
        return Boolean.TRUE;
    }
}



BEHIND SCENES 
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How it works? 
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How it works? 
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How it works? 
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How it works? 
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How it works? 

#7 

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

get(key)

get(key)

load(key)

query external data source

Backing map is 
updating 
internal map 



How it works? 
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How it works? 
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How it works? 
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How it works? 
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How it works? 
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How it works? 
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How it works? 
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#5 

put(k,v)

put(k,v)

re
ad

-w
rit

e
ba

ck
in

g-
m

ap

Cache store

Internal map

Miss cache

Distributed cache service

map event
DECO_STORE=false

Call to backing 
map return. 



How it works? 
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How it works? 
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How it works? 
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How it works? 
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How it works? 
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THREADING 



Requests and jobs 
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Requests and jobs 

Problem 
� Single API call may produce hundreds of jobs 

for worker threads in cluster (limited by 
partition count). 

� Write-through and read-through jobs could be 
time consuming. 

� While all threads are busy by time consuming 
jobs, cache is unresponsive. 



Requests and jobs 

Workarounds 
� Huge thread pools 
� Request throttling 
� By member (one network request at time) 
� By partitions (one job at time) 

� Priorities 
� Applicable only to EP and aggregators 



“UNBREAKABLE CACHE” PATTERN 



“Canary” keys 

� Canary keys – special keys (one per partitions) 
ignored by all cache operations. 

� Canary key is inserted once “recovery” 
procedure have verified that partition data is 
complete. 

� If partition is not yet loaded or lost due to 
disaster, canary key will be missing. 



Recovery procedure 

� Store object hash code in database 
� Using hash you can query database for all keys 

belonging to partition 
� Knowing all keys, can use read-through to pull 

data to a cache 
 

� Cache is writable during recovery! 
� Coherence internal concurrency control will 

ensure consistency 



“Unbreakable cache” 

read/write-trough + canary keys + recovery  
� Key based operations rely on read-through 
� Filter based operations are checking “canary” 

keys (and activate recovery is needed) 
� Preloading = recovery 
� Cache is writable at all times 
 



Checking “canary” keys 

� Option 1 
9 check “canary” keys 
9 perform query 

� Option 2 
9 perform query 
9 check “canary” keys 



Checking “canary” keys 

� Option 1 
9 check “canary” keys 
9 perform query 

� Option 2 
9 perform query 
9 check “canary” keys 

� Right way 
9 check “canaries” inside of query! 

 



“Unbreakable cache” 

Motivation 
� Incomplete data set would invalidate hundred of hours of 

number crunching 
� 100% complete data or exception 
� Persistent DB is requirement anyway 

Summary 
� Transparent recovery (+ preloading for free) 
� Always writable (i.e. feeds are not waiting for recovery) 
� Graceful degradation of service in case of “disastrous 

conditions” 
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