
Elastic Data
Harvey Raja
Principal Member Technical Staff
Oracle Coherence

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 2 2 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remain at the sole discretion of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 3

Agenda – Elastic Data

!  Inception

!  High Level Objectives

!  Implementation Details

!  Configuration

!  More Details

!  Collector

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 4

Traditional Stores

! LocalCache
–  In-memory binary map
–  Eviction / Expiry support

! External scheme
–  BDB
–  NIO [file | memory]
–  LH

! ReadWriteBackingMap

Backing Map Implementations

// MFU
// Allocations on heap

// Sparse Usage
// Avoid LH

// Coordinator

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 5

Local Cache

! Allocations made on heap
–  Objects treated the same as any other allocations

! High storage in a backing map == Large heap

! Unable to isolate scratch space from application storage

Disadvantages Imperfections

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 6

Elastic Data: High Level Objectives

! Both RAM and Disk (off heap) based stores

! Retain keys in memory with tickets

!  Journaling – append only

! Overflow from RAM to Disk

! Big Data – we manage the (de)allocations thus compaction

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 7

Elastic Data Over Time

3.7 3.7.1 12.1.2 12.1.x

Birth Minor changes

Exalogic
performance
enhancements

Expiry / Eviction
Hardening

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 8

Implementation Details

! Resource Managers (RamJournalRM, FlashJournalRM)
–  Scoped to member
–  Manage resources (Journals)

! Hold in-memory structure of keys to tickets

! Ticket returned from the journal after a successful store

! Ticket used to locate binary thus is passed to Journal.read

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 9

Implementation Details
! Update to an existing entry is an append and release

–  Journaling

! All ResourceManagers require a collector
–  Responsible for garbage collection and compaction (evacuation)

! RAM is always used in conjunction with Disk (Flash)
–  When RAM reaches capacity we overflow to Flash

! Minimal locking; CAS operations where possible

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 10

Store flow
FlashJournal

RAMJournal

Collector

Overflow

Collector

Preparer

Writer

Binary Key Ticket
00110101001
11001001011

...

...

store
ticket

update(key, ticket)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 11

FlashJournal

RAMJournal

Collector

Overflow

Collector

Preparer

Writer

Binary Key Ticket
00110101001
11001001011

...

...

Load flow

read ticket

ticket
binary value

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 12

! Keys are stored in memory
but in compact form

! Binary Radix tree allows sharing
of common denominators

! Tree instance per partition and cache
–  Increase in (cache & partition) density likely to yield more benefit
–  Specifically common segments in binary values, however tricky to measure

Binary Radix Tree
Keys and Tickets

H

AR

RIET VEY

IL

ARY TON

HARRIET
HARVEY
HILARY
HILTON

1 2 4 8Tickets:

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 13

Binary Key Ticket

00110101001
11001001011

...

...

FlashJournal

RAMJournal

Overflow

Collector

Preparer

Writer

Binary Key Ticket
00110101001
11001001011

...

...

Map Journal
BinaryStore

Map Journal
BinaryStore

Collector

ensureCa
che('foo')

ensureCache('bar')

Cache ResourceManagers

Single Instance of RAM /
Flash Resource Managers

across caches

Resource Managers manage
512 Journal Files

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 14

Configuration

! Operational configuration
–  Defines member scoped

resource managers

! Cache configuration
–  Defines cache storage implementation
–  No child elements (3.7.1)

Overview

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 15

Configuration
RAM Journal

! How utilized a file is to be eligible for compaction

! Maximum amount of storage per file

! Maximum size for each binary value

! Maximum size in total

! Whether NIO should be used opposed to storing on heap

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 16

Configuration
RAM Journal Validation

! Maximum Size can be percentage of heap

! Maximum File Size == Maximum Size / 512

! Maximum Value Size <= Maximum File Size / 2

! Log statements if values are adjusted due to conflicts with
other values

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 17

Configuration
Flash Journal

! Batch size to perform writes to file

! Maximum size of buffer prior to writing
to disk

–  max-pool-size % block-size == 0

! Mount point for device writes

! Upon startup which files should be eligible for purge

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 18

Configuration
Flash Journal

! Maximum amount of storage that can
be pending to be written to device

–  Will stop further writes until writing to
the device catches up

! How much memory should be used
to enter an aggressive collection
mode

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 19

Configuration
Flash Journal Validation

! Block size must be a 2x

! Pool Size % Block Size == 0

! 4K <= Async Limit <= 1GB

! High Journal Size > Max File Size

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 20

Flash Journal

! Writes performed asynchronous to store

! A couple of threads co-ordinate to perform writing

!  Inbuilt flow control mechanism to ensure writer is not overwhelmed

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 21

Flash Journal

$ kill -3 pid
Full thread dump Java HotSpot(TM) 64-Bit Server VM (20.14-b01-447 mixed mode):
...
”Journal-Writer" daemon prio=5 tid=7f8dfb844000 nid=0x10d86b000 runnable [10d86a000]
 java.lang.Thread.State: RUNNABLE

 at java.lang.Thread.currentThread(Native Method)
 at java.nio.channels.spi.AbstractInterruptibleChannel.blockedOn(AbstractInterruptibleChannel.java:191)
 at java.nio.channels.spi.AbstractInterruptibleChannel.end(AbstractInterruptibleChannel.java:179)
 at sun.nio.ch.FileChannelImpl.write(FileChannelImpl.java:203)
 - locked <7bf64fc68> (a java.lang.Object)
 at com.tangosol.io.journal.FlashJournalRM$WriterDaemon$PendingWriteTask.run(FlashJournalRM.java:2773)
 at com.tangosol.io.journal.FlashJournalRM$WriterDaemon.run(FlashJournalRM.java:2443)
 at com.tangosol.util.Daemon$DaemonWorker.run(Daemon.java:803)
 at java.lang.Thread.run(Thread.java:680)

”Journal-Preparer" daemon prio=5 tid=7f8dfb843800 nid=0x10d768000 in Object.wait() [10d767000]
 java.lang.Thread.State: WAITING (on object monitor)

 at java.lang.Object.wait(Native Method)
 at java.lang.Object.wait(Object.java:485)
 at com.tangosol.util.SingleWaiterMultiNotifier.await(SingleWaiterMultiNotifier.java:59)
 - locked <7c4b36590> (a java.lang.Object)
 at com.tangosol.io.journal.FlashJournalRM$PreparerDaemon.run(FlashJournalRM.java:2283)
 at com.tangosol.util.Daemon$DaemonWorker.run(Daemon.java:803)
 at com.tangosol.io.journal.FlashJournalRM$PreparerDaemon$1.run(FlashJournalRM.java:2145)
 at java.lang.Thread.run(Thread.java:680)

Preparer Buffer

Writer

Client control
returned once

Preparer notified

Once a buffer is
filled writer flushes

to device

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 22

Collector

! Responsibility: To reclaim memory from Journal Files
–  Dispose of files only with garbage
–  Compacts allocated memory thus reclaiming inaccessible memory

segments

!  Initial interval is 30s but adjusts based on Journal usage and predicting
benefit of an execution

! Each Resource Manager has its own Collector

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 23

Collector

! RAM Journal executes against multiple Journal files as it is relatively
cheap to compact

! Flash Journal compacts a single file per execution to avoid
overwhelming the block device

! Configuring High Journal Size (3.7.1) allows configuring when the
collector should become aggressive in collection

Continued

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 24

Q & A

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12 26

