
Coherence(Implementa/on(

Pa1erns(

Ben(Stopford(

The(Royal(Bank(of(Scotland(

Some(Ideas((

Nothing(More(

Why(do(we(use(Coherence?(

Fast?(

Scalable?(

Applica/on(layer?(

Simplifying(the(Contract(

•  We(don’t(want(ACID(all(of(the(/me(

•  We(want(to(pick(the(bits(we(need(when(we(

need(them(

•  We(want(to(use(the(context(of(our(business(

requirement(to(work(our(way(around(the(ones(

we(don’t(need.(

Version(your(Objects(

Why(do(we(care?(

Without(versioning(it’s(a(freeOforOall.((

•  What(changed?(

•  Was(something(overwri1en?(

•  How(can(you(prevent(concurrent(updates?(
•  What(did(the(system(look(like(10(seconds(ago.(

•  How(can(I(provide(a(consistent(view?(
•  How(to(I(ensure(ordering(of(updates(in(an(
asynchronous(system?(

A.1(

A.2(

B.1(

C.1(

Versioned(

Cache(

C.2(

D.1(

Versioning(your(Objects(

Versioning(your(Objects(

A.1(

A.2(

Cache(

Coherence(Trigger(

New(Version(=(Old(Version(+(1(??(

Running(a(Coherence(Filter(

Using(KeyOBased(Access(

Latest(Cache(

Write(

A(

B(

C(

D(

A.1(

A.2(

B.1(

C.1(

Versioned(

Cache(

C.2(

D.1(

Coherence(Trigger(

Latest(/(Versioned(Pa1ern(

Latest(/(Versioned(Pa1ern(

Latest(Cache(Key(=([Business(Key](

Versioned(Cache(Key(=([Business(Key][Version](

!"

#"

$"

%"

!&'"

!&("

#&'"

$&'"

$&("

%&'"

Suffers(from(data(duplica/on(

A.1(

A.L(

B.L(

C.1(

Versioned(

Cache(

C.L(

D.L(

Write(

Coherence(Trigger(

Latest(Marker(Pa1ern(

Well(Known(

Marker(Version(

However(our(trigger(can’t(use(

cache.put()(

Why?(

Need(to(consider(the(threading(model(

So(we’ll(need(to(use(the(backing(map(

directly(

public(void(copyObjectToVersionedCacheAddingVersion(MapTrigger.Entry(entry)(

{(

(((MyValue(value(=((MyValue)entry.getValue();(

(((MyKey(versionedKey(=((MyKey)value.getKey();(

(

(((BinaryEntry(binary(=((BinaryEntry)entry;(

(((Binary(binaryValue(=(binaryEntry.getBinaryValue();(

(

(((Map(map(=(binary.getContext().getBackingMap("VersionedCacheName");(

(((map.put(toBinary(versionedKey),(binaryValue);(

}(

A(third(approach(

The(Collec/ons(Cache(

A([O1,(O2,(O3..](

B([O1,(O2,(O3..](

C([O1,(O2,(O3..](

D([O1,(O2,(O3..](

Collec/onsCache(

Trigger(Appends(to(Collec/on(

collec/onsCache.put(key,(val);(

collec/onsCache.invoke(key,(

new(LastValueGe1er());(

…or(override(backing(store(

So(we(have(3(pa1erns(for(managing(

versioning(whilst(retaining(key(

based(access(

Using(versioning(to(manage(

concurrent(changes(

Mul/(Version(Concurrency(Control((

(MVCC)(

Version(1(

Version(2(

Cache(

Coherence(Trigger(

New(Version(=(Old(Version(+(1(??(

Concurrent(Object(Update(

(2(Clients(update(the(same(object(at(the(same(/me)(

A.1(

A.2(

Client1(Client2(

A.2(

Concurrent(Object(Update(

(Client2(fails(to(update(dirty(object)(

A.1(

A.2(

Versioned(

Cache(

Client1(Client2(

Concurrent(Object(Update(

(Client(2(updates(clean(object)(

A.1(

A.2(

A.3(

Versioned(

Cache(

Client1(

Client2(

So(a(concurrent(update(results(in(

an(error(and(must(be(retried.(

!"#$

!"%$

&'()*+#$ &'()*+%$

What’s(going(to(happen(if(we(are(

using(putAll?(

Reliable(PutAll(

We(want(putAll(to(tell(us(which(

objects(failed(the(write(process(

Reliable(PutAll(

Client(Extend(Node(

Node(Node(

Node(Node(

Node(

Invocable:(

•  Split(keys(by(member(

•  Send(appropriate(values(
to(each(member(

•  Collect(any(excep/ons(
returned((

Invocable:(

•  Write(entries(to(

backing(map((we(

use(an(EP(for(

this)(

This(gives(us(a(reliable(mechanism(

for(knowing(what(worked(and(what(

failed(

Synthesising(Transac/onality(

A(

B(

C(

D(

Cache(

The(Fat(Object(Method(

The(Single(Entry(Point(Method(

(objects(are(stored(separately)(

(

(
Collocate(with(

key(associa/on(

EP(

All(writes(synchronize(on(the(

primary(object.(

EP(

All(reads(synchronize(on(the(

primary(object.(

Wri/ng(Orphaned(Objects(

Write(orphaned(objects(first(

Write(read(

entry(point(

object(last(

This(mechanism(is(subtly(flawed(

Reading(several(objects(as(an(

atomic(unit(

aka(Joins(

The(trivial(approach(to(joins(

Get(

Cost(

Centers(

Get(

Ledger

Books(

Get(

Source(

Books(

Get(

Transac

O/ons(

Get(

MTMs(

Get(

Legs(

Get(

Cost(

Centers(

Network

Time(

Server(Side,(Sharded(Joins(

Orders(
Shipping(Log(

Common(Key(

Use(KeyAssocia/on(to(

keep(related(en//es(

together(

Server(Side,(Sharded(Joins(

Transactions

Cashflows

Mtms Aggregator joins
data across cluster

So(we(have(a(set(of(mechanisms(for(

reading(and(wri/ng(groups(of(

related(objects.(

Cluster(Singleton(Service(

A(service(that(automa/cally(restarts(

amer(failure(

A(service(that(automa/cally(restarts(

amer(failure(

What(is(the(cluster(singleton(good(for(

•  Adding(indexes(
•  Loading(data(
•  Keeping(data(up(to(date(
•  Upda/ng(cluster(/me(

•  You(can(probably(think(of(a(bunch(of(others(
yourselves.(

Code(for(Cluster(Singleton(

 //run in a new thread on every Cache Server
 while (true) {
 boolean gotLock = lockCache.lock("singletonLock", -1);
 if (gotLock) {
 //Start singletons
 wait();
 }
 }

Implemen/ng(Consistent(Views(

and(Repeatable(Queries(

BiOtemporal((

public(interface(MyBusinessObject{(

(((//data((

(((public(Date(getBusinessDate();(

(((public(Date(validFrom();(

(((public(Date(validTo();(

}(

(

Business(

Time(

System(

Time(

Where(does(the(System(Time(

come(from?(

You(can’t(use(the(

System.currentTimeMillis()(in(a(

distributed(environment!(

You(need(a(cluster(synchronised(

clock(

Singleton((

Service(

Repeatable(Time:(A(guaranteed(Tick(

Write(Time(

Read(Time(

Replicated(Caches(

(pessimis/c)(

Write(first(

Write(second(

As(we(add(objects(we(/mestamp(them(

with(Write(Time(

Singleton((

Service(

Write(Time(

Singleton((

Service(

When(we(read(objects(we(use(Read(

Time(

Read(Time(

Singleton((

Service(

Repeatable(Time:(A(guaranteed(Tick(

Write(Time(

Read(Time(

Replicated(Caches(

(pessimis/c)(

Write(first(

Write(second(

7(8(7(8(7(8(

6(7(6(7(6(7(

Event(Based(Processing(

A(

B(

C(

D(

Async((

Cachestore(

cache.put(key,(val);(

Messaging(as(a(System(of(Record(

Messaging System (use Topics for scalability)

Messaging(as(a(System(of(Record(

A(

B(

C(

D(

Trigger(

cache.put(key,(val);(

JMS

TOPIC(

Easy(Grid(Implementa/on(in(GUIs(

CQCs(on(a(CQC(

CQC(Cache(CQC(

GUI(JVM(

Define(this(in(config(

How(do(you(release(quickly(to(a(

Coherence(cluster?(

Rolling(Restart?(

DiskOPersist(

Final(Thoughts(

Data(is(the(most(important(

commodity(that(you(have((

Keep(it(safe(

Use(a(Par//on(Listener(

Have(Proac/ve(Monitoring(of(

Memory(

Version(your(Objects(

Thanks(

Slides(&(related(ar/cles(available(at:(

(

h1p://www.benstopford.com(

(

