

<Insert Picture Here>

Coherence*Extend Best Practices
Jason Howes
Consulting Member Technical Staff, Oracle Coherence

3

<Insert Picture Here>

Agenda

•  Coherence*Extend Overview

•  Best Practices
–  Architecture
–  Configuration
–  Deployment
–  Monitoring

•  Questions

4

A Bit About Me

•  Lead architect for Coherence*Extend at Tangosol
–  Coherence*Extend-JMS
–  Coherence*Extend-TCP
•  Java client
•  .NET client

•  Been with Oracle since 2007
–  Coherence*Extend-TCP for C++
–  Coherence*Extend-HTTP (REST API)

5

<Insert Picture Here>

Coherence*Extend Overview

6

What is Coherence*Extend?

•  A feature of Coherence that allows non-clustered
clients to access clustered services
–  Caching
–  Invocation
–  Aggregation/Processing

•  Java/C++/.NET/REST clients
•  Portable serialization format (POF)
•  Cluster “bridges” (replication, etc.)

7

The Big Picture

8

<Insert Picture Here>

Best Practices: Architecture

9

When should you use Coherence*Extend?

•  C++/.NET applications
•  Short-lived processes
•  Unmanaged or under-provisioned hardware
•  Access to multiple clusters from a single process
•  Access to clustered services:
–  From outside a firewall
–  From 1000s of application instances
–  From clients that use different Coherence versions
–  Across a high latency, unreliable, or untrusted network

10

Leverage Grid Aggregation and Processing

•  Use EntryAggregators to aggregate large data sets
•  Don’t pull the data set to the client!
•  Abuse case: pull 10 MB of order data to the client to

calculate an average price

•  Use EntryProcessors to update large data sets
•  Don’t update the data set on the client!
•  Abuse case: pull 10000 orders to the client, change

one property of the orders, and then push them back

11

Leverage Near and Continuous Query Caching

•  Local cache of frequently requested clustered data
(key or query-based)
•  Leverage Near and Continuous Query caches on your

clients whenever appropriate
•  Reduces Proxy and Cache Server CPU utilization
•  Reduces network utilization
•  In general, use either “none” or “present” Near Cache

invalidation strategy

12

Leverage POF Serialization

•  Avoids deserialization in the grid for most operations
•  Eliminates the need to deploy data classes in the grid
•  Reduces memory consumption, CPU utilization, and

request latency
•  Helps future proof your application
–  Different languages
–  Data class evolution

13

<Insert Picture Here>

Best Practices: Configuration

14

Client Configuration

•  Configure more than one Proxy Server address
•  Enable heartbeats
•  Set a request timeout
•  Configure an identity for the client
•  Leverage system properties

 <remote-addresses>!
 ...!
 <socket-address>!
 <address system-property="tangosol.coherence.extend.address">localhost</address>!
 <port system-property="tangosol.coherence.extend.port">9099</port>!
 </socket-address>!
 ...!
 </remote-addresses>!

15

Proxy Server Configuration

•  Disable local storage
–  -Dtangosol.coherence.distributed.localstorage=false!
–  In general, no Near or Continuous Query Caches

•  Enable JMX
•  Enable heartbeats
•  Set SO_REUSEADDR to true
•  Configure an appropriate size worker thread pool
•  Configure the same type of serializer used by clients

for clustered cache services

16

Proxy Server Configuration

•  On some version of Windows, configuring a 128kb

TCP/IP send buffer improves performance*
•  Leverage system properties
!
 <proxy-scheme>!
 ... !
 <thread-count system-property="tangosol.coherence.extend.threads">20</thread-count>!
 <acceptor-config>!
 <tcp-acceptor>!
 <local-address>!
 <address system-property="tangosol.coherence.extend.address">0.0.0.0</address>!
 <port system-property="tangosol.coherence.extend.port">9099</port>!
 </local-address>!
 <reuse-address>true</reuse-address>!
 </tcp-acceptor>!
 ... !
 <autostart system-property="tangosol.coherence.extend.enabled">true</autostart>!
 </proxy-scheme>!

* Your mileage may vary

17

<Insert Picture Here>

Best Practices: Deployment

18

Deployment

•  Leverage a TCP/IP load balancer
–  Built in Proxy Server software LB
–  Hardware LB such as F5

•  Scale your Proxy Service tier appropriately
–  Number of clients
–  Size and frequency of requests
–  Size and frequency of updates (passive clients)
–  Horizontal and vertical scale out

19

Deployment

•  Collocate a Proxy Server with server-class C++
and .NET applications
–  Removes one network hop
–  Consider running multiple per machine
–  Use “client” load balancer policy

•  Leverage the backwards compatibility of the
Coherence*Extend protocol
–  Older clients can connect to newer Proxy Servers
–  Supports a mix of client versions
–  Allows you to upgrade your clients incrementally

20

<Insert Picture Here>

Best Practices: Monitoring

21

JMX and JConsole

22

JMX and JConsole

•  ServiceMBean for the ProxyService:
–  TaskAverageDuration
–  TaskBacklog and TaskMaxBacklog
–  ThreadAverageActiveCount

•  ConnectionManager for the ProxyService:
–  OutgoingByteBacklog
–  OutgoingMessageBacklog

•  ConnectionMBean for an individual client connection:
–  Member
–  OutgoingByteBacklog
–  OutgoingMessageBacklog

23

Log Messages
•  Indicates a misconfigured serializer:
The serializer used by cache "…" (…) is incompatible with the
serializer configured for service "…" (…); therefore, cached keys and
values will be converted via serialization. This will result in
increased CPU and memory utilization. If possible, consider
reconfiguring either serialize!
!

•  Indicates the use of a cache that doesn’t support the
“pass-through” serialization optimization:

The cache "…" does not support pass-through optimization for objects
in internal format. If possible, consider using a different cache
topology.!
!

•  Indicates a “rogue” client or over utilized Proxy Server
(CPU, network, etc.):

Extend*TCP has determined that TcpConnection(…) must be closed to
maintain system stability: ...!

24

<Insert Picture Here>

Questions?

25

For More Information

Coherence:
http://www.oracle.com/technology/products/coherence/

Coherence Discussion Forums:
http://forums.oracle.com/forums/forum.jspa?forumID=480

Coherence Examples:
http://coherence.oracle.com/display/EXAMPLES

The Coherence Incubator:
http://coherence.oracle.com/display/INCUBATOR

