Filtering 100M objects What can go wrong?

Alexey Ragozin alexey.ragozin@gmail.com Dec 2013

- 100M object (50M was tested)
- ~ 100 fields per object
- ~ 1kb per object (ProtoBuf binary format)
- Simple queries
 select ... where ... order by ... [limit N]
- Expected query result set 200k
- Max query result set 50% of all data

- 100M object (50M was tested)
- ~ 100 fields per object Object size is Ok
- ~ 1kb per object (ProtoBuf binary format)
- Simple queries select ... where ... order by ... [limit N]

Inline with

- Expected query result set 200k **Coherence filters**
- Max query result set 50% of all data

- 100M object (50M was tested)
- ~ 100 fields per object
- ~ 1kb per object (ProtoBuf binary format)
- Simple queries
 select ... where ... order by ... [limit N]

Challenge

- Expected query result set 200k
- Max query result set 50% of all data

- 100M object (50M was tested)
- ~ 100 fields per object
- ~ 1kb per object (ProtoBuf binary format)
- Simple queries
 select ... where ... order by ... [limit N]

Real challenge

- Expected query result set 200k
- Max query result set 50% of all data

Big result set problem

Calling NamedCache method

- Single TCMP message to each participating member
- Processing of on remote member
- Single TCMP result message from each member
- Aggregation all results in caller JVM

Return form method

Naive strategy

Processing of query

- Send aggregator with filter, retrieve
 ✓ Keys
 - \checkmark Field for sorting
- Sort whole result set (keys + few fields)
- Apply limit
- Retrieve and send objects in fixed batches

OutOfMemoryError on storage node

- Storage node processing filter (600K objects per node)
- Deserialize value, apply filter, match ...
- ... retain entry until ... (end of filtering ?)

Deserialized

value is there

- Filter processing may take few seconds
- There could be few concurrent queries

Using indexes

- Index only filter does not deserialize object
- We cannot index everything
- Single unindexed predicate would call deserialization
- Special filter to cut deserialized object reference
- We do not need object (aggregator extracts from binary)
- Desirialized object now collected in young space
- Synthetic wrapper object + messing with serialization

Very high memory usage on service node

- Collecting and sorting large result set
- Have to use huge young space (8Gib)
- Query concurrency in limited by memory
- Single threaded sorting
- It is very fast tough

Indexes and attribute cardinality

"Status" attribute – 90% of objects are OPEN

http://blog.ragozin.info/2013/07/coherence-101-filters-performance-and.html

Indexes and attribute cardinality

Possible strategies to remedy

- Transform query
- Wrap "bad" predicates into NoIndexFilter
- Fix filter execution "planner"

Indexes and attribute cardinality

Can we go without indexes?

- Full scan 50M 80 cores, 3 servers
- 30 seconds
- Too slow!

Naive strategy

Almost good enough

Problems with naive strategy

- Big memory problems on *service* process
- Max result set size is limited
- No control on max TCMP packet size
- Indexes may be inefficient

- Result set is always sorted
- Primary key is always last sort attribute
- Aggregator on invocation
 - ✓ Sort its partial result set
 - \checkmark Selects first N
 - ✓ Return N references (key + sort attribute)
 - ✓ Return remaining size of each partition

P1	0 0	С)	0	0	000		0	00	0
P2	0 (C	00 (C						
P3	0	0	0	00	00	0	0	0	0	000
P4		0	0 0	0 0	0000	0	00	0 0) (0 0

Sort order

P1	0 0	С)	0	0	00	0 (0 0	00	0
P2	0	0	000)]						
P3	0	0	0	00	00	0	0	0	0	000
P4		0	0 0	0 0		0 0	00	0 0)	0 0

Sort order

Advantages

- Size of TCMP packets is under control
- Reduced traffic for LIMIT queries
- Fixed memory requirements for service node

Partial retrieval limit

- Target result set 200k
- 80 nodes
- Best performance with ~1500 limit

A little nuance ...

- Filter based aggregator is executed by one thread
- How many times aggregate(...) method would be called?

Once	Once per partition
Twice	Other

Coherence limits amount of data passed to aggregate(...) based on binary side of data.

What about snapshot consistency?

- There were no consistency to begin with
- No consistency between nodes
- Index updates are not transactional

But we need result set of query to be consistent!

- Hand made MVCC
- If you REALLY, REALLY, REALLY need it

Hand made MVCC

Synthetic key to have multiple versions in cache Data affinity to exploit partition level consistency Timestamp based surface – consistent snapshot

if timestamp is a part of key IndexAwareFilter can be used (without an index) *otherwise*

TimeSeriesIndex - https://github.com/gridkit/coherence-search-timeseries

Time series index

Special index for managing versioned data

https://github.com/gridkit/coherence-search-timeseries

Time series index

https://github.com/gridkit/coherence-search-timeseries

TCMP vs TCP

ТСР

- WAN networks
- Slow start
- Sliding window
- Timeout packet loss detection

Fair network sharing

TCMP

- Single switch networks
- Fast NACKs
- Loss detection by packet order
- Per packet resend

Low latency communications Bandwidth maximization

TCMP vs TCP

In bandwidth completion TCP doesn't have a chance against TCMP

Having TCP and TCMP in one network

- Normally TCMP is limited by proxy speaking TCP
- Traffic amplification effects (TCMP traffic >> TCP traffic)
- Bandwidth strangled TCP becomes unstable
 - ✓ Hanging for few seconds (retransmit timeouts)
 - ✓ Spurious connection resets

Keep TCMP in separate switch if possible!

http://blog.ragozin.info/2013/09/coherence-101-entryprocessor-traffic.html

Bonus: ProtoBuf extractor

Inspired by POF extractor

- Extracts fields for binary data
- Does not require generated classes or IDL
- Use field IDs to navigate data
- XPath like expressiveness (i.e. extract from map by key)
- Can processes any number of extractors in single pass
- Apache 2.0 licensed

https://github.com/gridkit/binary-extractors

Bonus: SJK diagnostic tool

SJK – CLI tool exploiting JVM diagnostic interfaces

- Connect to JVM by PID
- Display thread CPU usage in real time (like top)
- Display per thread memory allocation rate
- Dead objects histogram
 ... and more

https://github.com/aragozin/jvm-tools

Thank you

http://blog.ragozin.info

my articles
http://code.google.com/p/gridkit
http://github.com/gridkit
my open source code
http://aragozin.timepad.ru
tech meetups in Moscow

Alexey Ragozin alexey.ragozin@gmail.com